Efficient real-space configuration-interaction method for the simulation of multielectron mixed quantum and classical nonadiabatic molecular dynamics in the condensed phase
نویسندگان
چکیده
We introduce an efficient configuration interaction ~CI! method for the calculation of mixed quantum and classical nonadiabatic molecular dynamics for multiple electrons. For any given realization of the classical degrees of freedom ~e.g., a solvent!, the method uses a novel real-space quadrature to efficiently compute the Coulomb and exchange interactions between electrons. We also introduce an approximation whereby the classical molecular dynamics is propagated for several time steps on electronic potential energy surfaces generated using only a particularly important subset of the CI basis states. By only updating the important-states subset periodically, we achieve significant reductions in the computational cost of solving the multielectron quantum problem. We test the real-space quadrature for the cases of two electrons confined in a cubic box with infinitely repulsive walls and two electrons dissolved in liquid water that occupy a single cavity, so-called hydrated dielectrons. We then demonstrate how to perform mixed quantum and classical nonadiabatic dynamics by combining these computational techniques with the mean-field with surface hopping algorithm of Prezhdo and Rossky @J. Chem. Phys. 107, 825 ~1997!#. Finally, we illustrate the practicality of the approach to multielectron nonadiabatic dynamics by examining the nonadiabatic relaxation dynamics of both spin singlet and spin triplet hydrated dielectrons following excitation from the ground to the first excited state. © 2003 American Institute of Physics. @DOI: 10.1063/1.1610438#
منابع مشابه
Quantum decoherence and the isotope effect in condensed phase nonadiabatic molecular dynamics simulations
In this paper, we explore in detail the way in which quantum decoherence is treated in different mixed quantum-classical molecular dynamics algorithms. The quantum decoherence time proves to be a key ingredient in the production of accurate nonadiabatic dynamics from computer simulations. Based on a short time expansion to a semiclassical golden rule expression due to Neria and Nitzan @J. Chem....
متن کاملExploring the role of decoherence in condensed-phase nonadiabatic dynamics: a comparison of different mixed quantum/classical simulation algorithms for the excited hydrated electron.
Mixed quantum/classical (MQC) molecular dynamics simulation has become the method of choice for simulating the dynamics of quantum mechanical objects that interact with condensed-phase systems. There are many MQC algorithms available, however, and in cases where nonadiabatic coupling is important, different algorithms may lead to different results. Thus, it has been difficult to reach definitiv...
متن کاملAn analytical derivation of MC-SCF vibrational wave functions for the quantum dynamical simulation of multiple proton transfer reactions: Initial application to protonated water chains
This paper presents an analytical derivation of a multiconfigurational self-consistent-field ~MC-SCF! solution of the time-independent Schrödinger equation for nuclear motion ~i.e. vibrational modes!. This variational MC-SCF method is designed for the mixed quantum/classical molecular dynamics simulation of multiple proton transfer reactions, where the transferring protons are treated quantum m...
متن کاملGyration Radius and Energy Study at Different Temperatures for Acetylcholine Receptor Protein in Gas Phase by Monte Carlo, Molecular and Langevin Dynamics Simulations
The determination of gyration radius is a strong research for configuration of a Macromolecule. Italso reflects molecular compactness shape. In this work, to characterize the behavior of theprotein, we observe quantities such as the radius of gyration and the average energy. We studiedthe changes of these factors as a function of temperature for Acetylcholine receptor protein in gasphase with n...
متن کاملMolecular dynamics with electronic transitions
Articles you may be interested in Molecular dynamics study of phase transitions in Xe A method is proposed for carrying out molecular dynamics simulations of processes that involve electronic transitions. The time dependent electronic Schrodinger equation is solved self-consistently with the classical mechanical equations of motion of the atoms. At each integration time step a decision is made ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003